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Spatial intensity correlations between waves transmitted through random media are analyzed within the
framework of the random matrix theory of transport. Assuming that the statistical distribution of transfer
matrices is isotropic, we found that the spatial correlation function can be expressed as the sum of three terms,
with distinctive spatial dependences. This result coincides with the one obtained in the diffusive regime from
perturbative calculations, but holds all the way from quasiballistic transport to localization. While correlations
are positive in the diffusive regime, we predict a transition to negative correlations as the length of the system
decreases.
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When a wave propagates coherently through a random
medium important correlations emerge between the different
propagating paths, which manifest themselves as correlations
in the intensity speckle pattern. In contrast with the short
range correlations characteristic of chaotic light �1�, tempo-
ral, angular, and frequency �2,3,5,4,6–10� long range �C2�
and infinite range �C3� correlations have been the subject of
great interest over the last decade. Recently, the direct obser-
vation of spatial correlations in the intensity speckle pattern
�11,12� and in the polarization �13� of electromagnetic waves
transmitted through a random medium has renewed the in-
terest in this problem �14�.

One of the theoretical approaches followed to study this
problem involved a microscopic diagrammatic calculation
�4–6�. This was also the approach in the recent work that
showed that the spatial correlation function of the normal-
ized intensity can be expressed as the sum of three terms,
which differ in their spatial dependence �11�, and in the work
finding an equivalent structure for the correlations in the po-
larized radiation �13�. However, the application of these ap-
proaches is strictly limited to the diffusive regime where the
length of the disordered region L is much larger than the
transport mean free path � but still much smaller than the
localization length � �i.e., ��L���. Our main goal here is to
extend these results to the quasiballistic and the localized
regime.

An alternative approach, macroscopic in nature, has been
applied successfully to study angular correlations in random
media �7–10�; it considers the correlations between the trans-
port coefficients in the scattering matrix describing the sys-
tem in the framework of random matrix theory �RMT�
�8,15,16�. Most of the work based on RMT has been focused
on the study of angular or channel-channel correlations. It is
the purpose of this work to apply the RMT approach to study
the spatial intensity correlation functions. In analogy with
angular correlations, we show that the assumption of isot-
ropy of the transfer matrix determines the structure of the
spatial correlations of the normalized intensity. Our result,
which coincides with the one obtained from microscopic per-
turbative calculations �in the diffusive regime� �11� is not
perturbative and holds all the way from quasiballistic trans-

port to localization. Only the specific values of the three
coefficients �C1, C2, and C3� depend on the transport regime.
These values, obtained from the Monte Carlo solution of the
Dorokhov, Mello, Pereyra, and Kumar �DMPK� �15,17� scal-
ing equation, are in full agreement with microscopic numeri-
cal calculations of bulk disordered wires. While long range
correlations are positive in the diffusive regime, we predict a
transition to negative values for both angular and spatial cor-
relations when L is smaller that �2�. Only when L�2� do
the long range correlations disappear and the statistical prop-
erties of the light emerging from the random media are simi-
lar to those of a chaotic source. Although these results refer
to classical correlations, they can also be relevant in the con-
text of quantum correlation imaging �18� and quantum co-
herence �1� in random media.

We will consider a wave propagating in the z-direction in
a constrained geometry �see the inset of Fig. 1�. The eigen-
functions of the cavity �in the absence of disorder� separate
into a longitudinal and a transverse part,

FIG. 1. �Color online� Square of the field correlation function
for a single source as a function of the distance between detectors
for a 2D waveguide. Circles correspond to microscopic numerical
calculations �for N=20 and g=1.12� based on the model system
sketched in the inset. The continuous line is the result of Eqs. �4�
and �5� with �Taj� obtained from the numerical calculations.
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�n
±�r� =

1
�kn

�n���exp	±iknz
 , �1�

where � are the transverse coordinates �we will only discuss
the case of scalar waves in this work, neglecting polarization
effects�. The integer n=1,2 , . . . ,N labels the propagating
modes, also referred to as scattering channels. Mode n has a
real wave number kn=�k2−qn

2, where k is the wave number
of the incident radiation, and qn is the momentum associated
with the normalized transverse wave function �n���. The
normalization of the total wave function �n is chosen to
carry unit current. Let us consider two point sources at
r=rA and r=rB on the left-hand side of the system, and two
detectors at r=r1 and r=r2 on the right side �as sketched in
Fig. 1�. For a point source at r=rA the incoming field from
the left is proportional to the Green function of the clean
waveguide,

G0
+�rA,r� =

i

2�
a

�a
+*�rA��a

+�r�; �z � zA� . �2�

The field at a point r1 on the right side outside the system
will be given by

E�A,1� = �
j
��

a

tjaca
� j
+�r1� , �3�

where ca��a
+*�rA�. tja denote the transmitted amplitude in

channel j when there is a unit flux incident from the left in
channel a. The average intensity at that point is given by
�I�A ,1�����E�A ,1��2�, where �¯� denotes disorder averag-
ing �over the ensemble of samples�. For a finite sample, the
tja’s are assumed to have random phases with �tja�=0 and
�tjatj�a�

* �= �Tja�	aa�	 j j�. The square of the field-field spatial
correlation function can be written as

C̃1�A,1;B,2� =
��E�A,1�E*�B,2���2

�I�A,1���I�B,2��
�4�

where

�E�A,1�E*�B,2�� = �
aa�j j�

cada�
* � j

+�r1�� j�
+*�r2��tjatj�a�

* �

= �
aj

cada
*� j

+�r1�� j
+*�r2��Tja� �5�

�with da��a
+�rB��. The square of the field-field correlation

function takes a simple form in the equivalent channel ap-
proximation �ECA�: Assuming that �Tja�= �1/N2�� ja�Tja�
�g /N2, Eq. �5� factorizes and

C̃1�A,1;B,2� = �F�rA,rB��2�F�r1,r2��2, �6�

where �F�1,2��2 can be written in terms of the Green func-
tion �2�:

�F�r1,r2��2 =
�Im	G0

+�r1,r2�
�2

Im	G0
+�r1,r1�
Im	G0

+�r2,r2�

. �7�

In the large-N limit, the Green function of the clean wave-
guide tends to the free-space Green function, exp�ikr� / �4
r�

in the case of a three-dimensional �3D� conductor, and we
have

�F�r1,r2��2 � � sin�k��r12��
k��r12�

�2

�8�

and analogous results hold in 2D with the “sinc” replaced by
the Bessel function J0:

�F�r1,r2��2 � J0
2�k��r12�� . �9�

The behavior of the function �F�2 vs k�r=k�x1−x2� is illus-
trated in Fig. 1. Black dots correspond to the large-N limit,
Eq. �9�. For a finite width, the field correlation function �Eq.
�7�� strongly depends on the position of the detectors.
Finite size effects can be minimized by using the experimen-
tal approach of Ref. �11�: we consider the average of �F�2
when x1 and x2 are uniformly distributed over the interval
�W /10,W−W /10�. As can be seen in Fig. 1, the averaged
�F�2 �dashed line� already presents the typical large-N behav-
ior for the case of N=20.

The normalized spatial intensity correlation function can
be defined as

C�A,1;B,2� �
�I�A,1�I�B,2��

�I�A,1���I�B,2��
− 1, �10�

where the first term of the right-hand side is given by

�I�A,1�I�B,2�� = �
aa�bb�

�
ii�j j�

	�caca�
* dbdb�

* �

� �� j
+�r1�� j�

+*�r1��i
+�r2��i�

+*�r2��

��tjatj�a�
* tibti�b�

* �
 . �11�

In contrast with field-field correlations, the calculation of
the averages presents subtle properties directly related to the
symmetry properties of the scattering S matrix: flux conser-
vation and reciprocity imply that S is unitary and symmetric.
S admits a polar decomposition �15,16�:

S = �u�1� 0

0 u�2� ��− �1 − T �T
�T �1 − T��u�1�T 0

0 u�2�T � ,

where u�i� are unitary matrices and T=diag�T1 ,T2 , . . . ,TN� is
a N�N diagonal matrix with the transmission eigenvalues
on the diagonal. The transmission amplitudes can be written
as

tja = �
n

ujn
�2���Tn�uan

�1�. �12�

One of the key assumptions in the macroscopic approach
is the hypothesis of isotropy �8,15,16�. Under this hypothesis
the statistical distribution of the transmission eigenvalues
	Tn
 is independent of the unitary matrices u�i�, and the cal-
culation of the statistical averages in Eq. �11� factorizes.
Moreover, u�1� and u�2� are statistically independent from
each other, each being distributed according to the invariant
measure of the unitary group. By using the averages over the
unitary group ��ujn��uj�n��

*� and ��ujnuim��uj�n�ui�m��
*�
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�evaluated by Mello in Ref. �19��, after some algebra, we
find

�tjatj�a�
* � =

1

N2 �T�	 j j�	aa�, �13�

�tjatj�a�
* tibti�b�

* � = �AN�T2� − BN�T2���	ij�	i�j	ab�	a�b

+ 	 j j�	ii�	aa�	bb�� + �AN�T2� − BN�T2��

��	 j j�	ii�	ab�	a�b + 	ij�	i�j	aa�	bb�� �14�

introducing the notation g= �T���n�Tn�, var	g
��T2�− �T�2,
�T2���n�Tn

2�, and the coefficients AN and BN given by

AN =
N2 + 1

N2

1

�N2 − 1�2 ; BN =
2

N

1

�N2 − 1�2 .

From Eq. �14�, and taking i= i�, j= j�, a=a�, b=b�, we
easily recover the well-known channel-channel correlation
function Cjaib �7�

�TjaTib�
�Tja��Tib�

− 1 = C1�	ij	ab� + C2�	ab + 	ij� + C3, �15�

where

C1 �
N4

�T�2 �AN�T2� − BN�T2�� , �16�

C2 �
N4

�T�2 �AN�T2� − BN�T2�� , �17�

C3 � C1 − 1. �18�

The angular correlation function has the same structure as
the one found first by Feng et al. �6�, the three coefficients
C1, C2, and C3 corresponding, respectively, to short, long,
and infinite range correlations.

Substituting Eqs. �13� and �14� in Eqs. �5� and �11�, we
obtain the spatial intensity correlation function

C��rab,�r12� �
�I�a,1�I�b,2��

�I�a,1���I�b,2��
− 1

= ��F�ra,rb��2�F�r1,r2��2�C1 + ��F�ra,rb��2

+ �F�r1,r2��2�C2 + C3, �19�

where the correlation coefficients C1, C2, and C3 are exactly
the same as those appearing in Eq. �15�. The structure of the
spatial correlations is, then, equivalent to that obtained for
channel correlations with the angular “	ab” functions re-
placed by the spatial functions �F�a ,b��2 �Eq. �7��.

The spatial intensity-intensity correlation differs from
the square of the field-field correlation, Eq. �6� �typical
of chaotic waves�. The behavior of the difference

�C��rab ,�r12�− C̃1��rab ,�r12�� is illustrated in Fig. 2 �for a
2D waveguide�. For a single source and two detectors
��rab=�R=0 and �r12��r�, or vice versa, it is given by
��C2+C3��1+ �J0�k�r��2� and approaches a constant as �r
increases. For large �R, the correlations as a function of �r

behave as �C2�J0�k�r��2+C3. These results are in qualita-
tive agreement with the results of Ref. �11�. As a matter of
fact, our expressions �19� and �7� �or Eq. �8� in the large-N
limit� are consistent, after a slight reordering of the terms,
with the expression �5� in reference �11�. The equivalence
with polarization correlations �Eq. �2� of Ref. �13�� is also
evident. However, while the diagrammatic expansions are
strictly valid in the diffusive regime, our results do not de-
pend at all on the transport regime, and are a direct conse-
quence of the isotropy hypothesis. Only the relative size of
C1, C2, and C3 will depend on the length of the system L and

FIG. 2. �Color online� Plots of the intensity correlation function.
Inset: Long range intensity correlations �C2� as a function of the
length s=L /� of the system. Black dots are the results of numerical
calculations.

FIG. 3. �Color online� Correlation coefficients C1, C2, and C3 as
a function of the length s=L /� of the system for N=20. Continuous
lines are the results of the DMPK equation. The dashed line repre-
sents the perturbative 1/N expansion �after Ref. �10��. Circles are
numerical results for the model system sketched in Fig. 1
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the mean free path � through the distribution of transmission
eigenvalues P�	Tn
 ,s�, with s=L /�.

In the diffusive regime �1�g�N�, the correlation coeffi-
cients take the well-known values �6,7�: C1�1, gC2�2/3,
and g2C3�2/15. We have obtained their dependence with
the length of the system �summarized in Fig. 3 for N=20� by
solving the DMPK equation using the Monte Carlo approach
of Ref. �20�. For L
�, C2g and C3g2 decrease although C1,
C2, and C3 themselves present an exponential growth with L
in the localized regime. For L�� �or g
1�, the exact solu-
tion of the DMPK equation is well described by the known
analytical results based on 1/N expansion �10� �dashed line
in Fig. 3�. In agreement with previous results on angular
correlations �10�, our work predicts a transition from positive
to negative long range spatial correlations as the length of
the system decreases.

In order to confirm the predictions of the macroscopic
approach, we have performed extensive numerical calcula-
tions based on the simple two-dimensional �2D� model
sketched in Fig. 1. For electromagnetic waves, we assume
s-polarization with the electric vector parallel to the walls.
The disordered region is divided in small rectangular regions
of section 	z�	x. Within each slice the refraction index nR
has random values distributed uniformly in the interval
�1−	nR, 1+	nR�. We take 	x=W /10, 	z=W /20, and 	nR
=0.025, for a 20-mode waveguide �W /�=10.25� as in Fig. 1.

Transmission and reflection coefficients are exactly calcu-
lated by solving the 2D wave equation by mode matching at
each 	z-slice, together with a generalized scattering-matrix
technique �21�. Figure 1 shows the behavior of the averaged
field correlations �for s=15, �g�=1.12�. The numerical inten-
sity correlations are very close to the expected behavior �see
Fig. 2� although they are not fully described by Eqs. �15� and
�19� since transport is not fully isotropic. However, we can
extract the correlation coefficients C1, C2, and C3 from a
least-squares fitting of spatial or angular numerical correla-
tions with Eq. �19� or �15�, respectively. In both cases, the
obtained coefficients �circles in Fig. 3� are in full agreement
with the predictions of the DMPK approach.

The predicted nontrivial dependence of the spatial inten-
sity correlations with L /� should be observable in actual
microwave experiments �11� by changing either L or the fre-
quency, filling the tube with samples having a strong depen-
dence of � with the frequency �22�.

This work has been supported by the Spanish MCyT �Ref.
No. BFM2003-01167� and the EU Integrated Project “Mo-
lecular Imaging” �LSHG-CT-2003-503259�. One of us
�G.C.� wants to acknowledge the support of the Condensed
Matter Physics Dept. of the Universidad Autonoma de
Madrid, where part of his work was performed.

�1� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-
tics �Cambridge Univ. Press, New York 1995�; R. Loudon, The
Quantum Theory of Light �Oxford Univ. Press, Oxford, 2000�.

�2� Waves and Imaging through Complex Media, edited by P. Seb-
bah �Kluwer, Dordrecht, 2001�.

�3� Wave Scattering in Complex Media: From Theory to Applica-
tions, edited by B. van Tiggelen and S. Skipetrov �Kluwer,
Dordrecht, 2003�.

�4� I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61,
2328 �1988�.

�5� M. J. Stephen and G. Cwilich, Phys. Rev. Lett. 59, 285 �1987�.
�6� S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett.

61, 834 �1988�; R. Brekovits and S. Feng, Phys. Rep. 238,
135 �1994�.

�7� P. A. Mello, E. Akkermans, and B. Shapiro, Phys. Rev. Lett.
61, 459 �1988�.

�8� P. A. Mello and A. D. Stone, Phys. Rev. B 44, 3559 �1991�.
�9� E. Bascones, M. J. Calderon, D. Castelo, T. Lopez, and J. J.

Saenz, Phys. Rev. B 55, R11911 �1997�.
�10� A. García-Martín, F. Scheffold, M. Nieto-Vesperinas, and J. J.

Saenz, Phys. Rev. Lett. 88, 143901 �2002�; J. J. Sáenz, L. S.
Froufe-Pérez, and A. García-Martín, in Ref. �3�, p. 175.

�11� P. Sebbah, B. Hu, A. Z. Genack, R. Prini, and B. Shapiro,
Phys. Rev. Lett. 88, 123901 �2002�.

�12� V. Emiliani et al., Phys. Rev. Lett. 90, 250801 �2003�.
�13� A. A. Chabanov, N. P. Tregoures, B. A. van Tiggeler, and A. Z.

Genack, Phys. Rev. Lett. 92, 173901 �2004�.
�14� Y. H. Kim, U. Kuhl, H. J. Stockmann, and P. W. Brouwer,

Phys. Rev. Lett. 94, 036804 �2005�; S. E. Skipetrov, ibid. 93,
233901 �2004�; A. A. Chabanov, B. Hu, and A. Z. Genack,
ibid. 93, 123901 �2004�; V. M. Apalkov, M. E. Raikh, and B.
Shapiro, ibid. 92, 253902 �2004�.

�15� P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. �N.Y.� 181,
290 �1988�.

�16� C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 �1997�.
�17� O. N. Dorokhov, Solid State Commun. 51, 381 �1984�.
�18� A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys.

Rev. A 70, 013802 �2004�; P. Lodahl, A. P. Mosk, and A.
Lagendijk, Phys. Rev. Lett. 95, 173901 �2005�; G. Scarcelli, V.
Berardi, and Y. Shih, ibid. 96, 063602 �2006�.

�19� P. A. Mello, J. Phys. A 23, 4061 �1990�.
�20� L. S. Froufe-Pérez, P. Garcia-Mochales, P. A. Serena, P. A.

Mello, and J. J. Saenz, Phys. Rev. Lett. 89, 246403 �2002�.
�21� J. A. Torres and J. J. Sáenz, Jpn. J. Appl. Phys., Part 1 73,

2182 �2004�.
�22� A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature

�London� 404, 850 �2000�.

CWILICH, FROUFE-PÉREZ, AND SÁENZ PHYSICAL REVIEW E 74, 045603�R� �2006�

RAPID COMMUNICATIONS

045603-4


